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Abstract

The Bloch sphere is a familiar and useful geometrical picture of the
time evolution of a single spin or a quantal two-level system. The
analogous geometrical picture for three-level systems is presented with
several applications. The relevant SU(3) group and su(3) algebra are eight-
dimensional objects and are realized in our picture as two four-dimensional
manifolds that describe the time evolution operator. The first, called the
base manifold, is the counterpart of the S2 Bloch sphere, whereas the second,
called the fiber, generalizes the single U(1) phase of a single spin. Now
four dimensional, it breaks down further into smaller objects depending on
alternative representations that we discuss. Geometrical phases are also
developed and presented for specific applications. Arbitrary time-dependent
couplings between three levels or between two spins (qubits) with SU(3)
Hamiltonians can be conveniently handled through these geometrical objects.

PACS numbers: 02.40.Yy, 02.20.Qs, 03.67.Lx, 03.65.Vf, 03.65.Fd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Three-level systems are of fundamental importance to many branches of physics. While two
levels give the simplest model for the dynamics of discrete systems, three levels illustrate
the role that an intermediate state can play in inducing transitions between the other two.
Canonical examples of this include applications in quantum optics that use three-level atoms
to control quantum-state evolution [1]. Such laser control is used, for instance, to transfer
population between two states using stimulated Raman adiabatic passage (STIRAP) [2, 3]
and chirped adiabatic passage (CARP) [4]. In some of these systems, the interaction of the
radiation with the atom is represented as a time-dependent Hamiltonian inducing an energy
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Figure 1. Bloch or Poincaré sphere representation for SU(2). The base manifold is the S2 sphere
while the fiber is given by the U(1) phase at each point on that sphere. Together, we have the fiber
bundle SU(2) � S2×U(1).

separation between the two states that varies with time. For a non-zero sweep rate, it can
be shown that there is a finite transition probability between the states [5–7]. The study
of Landau–Zener transitions in multilevel systems is of interest to understand the interplay
between various level crossings [8]. Particle physics represents another example where three-
level systems play a central role as, for example, the oscillations of neutrino flavor eigenstates
[9].

The general Hamiltonian of a three-level system involves eight independent operators.
Such a set can also naturally arise as a subgroup of higher level systems where there is some
degeneracy involved. Thus, several important two-qubit problems in quantum computing and
quantum information can so be written in terms of eight operators that form a subalgebra
of the full 15 operators that describe two spins. The Hamiltonian describing anisotropic
spin exchange is an example of one such important physical problem. While isotropic spin
exchange has been explored to design two-qubit gates in quantum computing, anisotropic spin
exchange has been studied as a possible impediment to two-qubit gate operations [10, 11].
Such an SU(3) Hamiltonian is given by

H(t) = J (t)(�σ · �τ + �β(t) · (�σ × �τ ) + �σ · Γ(t) · �τ ), (1)

when written in terms of a scalar, a vector and a symmetric tensor operator expressed in terms
of two Pauli spins. Here, �β(t) is the Dzyaloshinksii–Moriya vector [12, 13] and Γ(t) is the
(traceless) symmetric interaction term. While the first term is the familiar Ising interaction
Hamiltonian [14], the last two terms are due to the spin–orbit coupling.

Given this wide applicability, a geometrical picture of the dynamics of three-level systems
can be useful. For a two-level system, the geometry of the evolution operator is well known.
Any density matrix can be written as ρ = (I (2) + �n · �σ)/2, where �σ are the Pauli matrices.
Unitary evolution of ρ is represented as the vector �n rotating on the surface of a three-
dimensional unit sphere called the Bloch sphere [15]. This vector, along with a phase, accounts
for the three parameters describing the time-evolution operator of a two-level system. The
vector �n, along with the phase factor, is shown in figure 1. The vector �n shown traces out
the ‘base manifold’ and together with the global phase factor or ‘fiber’ at each point on that
manifold is referred to as a ‘fiber bundle’ [16]. While the density matrix is independent
of it, the complete description of the system requires this phase as well. The aim of this
paper is to provide an analogous geometrical picture for a three-level system with appropriate
generalizations of the base and fiber.

Some work already exists regarding the geometry of SU(3). Following Wei and Norman
[17], Dattoli and Torre have constructed the ‘Rabi matrix’ for a general SU(3) unitary evolution
in [18]. Mosseri and Dandoloff in [19] described the generalization of the Bloch sphere
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construction of single qubits to two qubits via the Hopf fibration description. This method relies
upon the homomorphism between the SU(2) and SO(3) groups and likewise between the SU(4)
and SO(6) groups. In [20], the authors propose a generalized Euler angle parameterization for
SU(4). This decomposition is similar to the work in [21–27] into which fits our treatment of
SU(3) in this paper.

Another well-known choice of the (N2 −1) generators sj of the SU(N) group was studied
in [28, 29]. Consider sj , chosen to be traceless and Hermitian such that [si , sj ] = 2ifijksk

and Tr{sisj } = 2δjk . Here, fijk is the completely antisymmetric symbol which for a two-level
system is the Levi Civita symbol εijk , and a repeated index is summed over. In this basis, the
Hamiltonian is written as H(t) = �isi . With this choice, the Liouville–Von Neumann equation
for the density matrix ρ = I/N +Sj sj /2 becomes Ṡi = fijk�jSk . Note that for the N = 2 case,
this is the familiar Bloch sphere representation. But, for SU(3), this representation differs from
that we present in two aspects. First, the ‘coherence vector’, whose elements are real and are
given by Sj , experiences rotations in a (N2 − 1)-dimensional space. For instance, for SU(3),
the coherence vector undergoes rotations in an eight-dimensional space. Arbitrary rotations in
eight dimensions are characterized by 28 parameters. But since a three-level Hamiltonian is
only characterized by eight real quantities, this means that the coherence vector is not permitted
arbitrary rotations and is instead constrained. Second, the coherence vector representation
does not differentiate between local and non-local operations. Our decomposition of the time-
evolution operator into a diagonal and an off-diagonal term in this paper is more suited for this
differentiation. Such a parameterization of the time-evolution operator in terms of local and
non-local operations can be useful in understanding entanglement. The aim of this paper is to
discuss the geometry of two-qubit time-evolution operators in terms of such a decomposition.
The authors in [30] discuss an alternative decomposition of two-qubit states in terms of two
three-vectors and a 3 × 3 dyadic to discuss entanglement.

A series of papers presented a systematic approach to studying N-level systems using
a program of unitary integration [21–27, 31, 32]. Continuing this program, we present a
complete analytical solution to the three-level problem that generalizes the Bloch sphere
approach to three levels. Below, we define the fiber bundle via two different decompositions
which allows us to extract the geometric phases associated with a three-level system (for
a discussion on the quantum phases of two-level and three-level systems, see [33–36]).
These fiber bundles are {SU(3)/SU(2) × U(1)} × {SU(2) × U(1)} and {SU(4)/[SU(2) ×
SU(2)]} × {SU(2) × SU(2)}.

The structure of this paper is as follows. Section 2 outlines the unitary integration program
to solve time-dependent operator equations. Section 3 uses this technique for the solution of
a general time-dependent SU(3) Hamiltonian completely analytically. Section 4 presents the
geometry of the time-evolution operator for SU(3) with some applications. Section 5 presents
a coordinate description that is useful to define the geometric phase for three-level systems,
and section 6 presents the conclusions. The appendix will present an alternative analytical
solution to the three-level problem by exploiting the natural embedding of SU(3) in SU(4).

2. Unitary integration

Many important applications in physics involve time dependence in the Hamiltonian. For
such systems, the time-evolution operator is not given by the simple exponentiation of the
Hamiltonian [37]. To handle the time evolution for such Hamiltonians iteratively, ‘unitary
integration’ was proposed in [21–24]. Earlier work with this technique is presented in [17, 29].
Later, the technique was presented as generalizing the SU(2) example to solve iteratively for
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the time-evolution operator U(N)(t) of N-level systems [31, 32]. Consider the N-dimensional
Hamiltonian H(N) given by

H(N) =
(

H(N−n) V

V† H(n)

)
. (2)

The diagonal blocks are (N−n)- and (n)-dimensional square matrices, respectively, while V is
an (N − n) × (n)-dimensional matrix.

The evolution operator U(N)(t) for such a H(N) is written as a product of two operators
U(N)(t) = Ũ1Ũ2, where

Ũ1 =
(

I(N−n) z(t)

0† I(n)

) (
I(N−n) 0

w†(t) I(n)

)
, (3)

Ũ2 =
(

Ũ(N−n) 0

0† Ũn

)
.

For any N, n is arbitrary with 1 � n < N , and the tilde denotes that the matrices need not
be unitary. The product of three factors parallels the product of exponentials in three Pauli
matrices. Equations defining the rectangular matrices z(t) and w†(t) are developed and the
problem is reduced to the two residual (N − n)- and (n)-dimensional evolution problems
sitting as diagonal blocks of Ũ2. z(t) and w†(t) are related to each other through the unitarity
of U(N)(t) [31, 32]:

z = −γ1w = −wγ2, (4)

with γ1 = Î(N−n) + z · z† and γ2 = Î(n) + z† · z.
With U(N)(t) in such a product form, the Schrödinger equation is written as

i ˙̃U 2(t) = HeffŨ2, (5)

Heff = Ũ−1
1 H(N)Ũ1 − iŨ−1

1
˙̃U 1.

Here, the overdot denotes differentiation with respect to time. Since Ũ2 is block diagonal, the
off-diagonal blocks of equation (5) define the equation satisfied by z

iż = H(N−n)z + V − z(V†z + H(n)). (6)

Note that the initial condition UN(0) = IN implies that Ũ1(0) = I(N−n), Ũ2(0) = I(n) and
z(0) = 0(N−n). Equation (6) along with the initial condition can be solved to determine z and
thereby Ũ1 and Heff for the subsequent solution of equation (5) for Ũ2. In this manner, the
procedure iteratively determines U(N)(t).

Before discussing the geometry of the time-evolution operators for this unitary case,
we briefly mention the procedure for dealing with non-Hermitian Hamiltonians. For such a
non-Hermitian Hamiltonian,

H(N) =
(

H̃(N−n) V

Y† H̃(n)

)
, (7)

where the tilde denotes possibly non-Hermitian character, and the off-diagonal components V

and Y are independent. In this case, equation (6) is replaced by

iż = H̃(N−n)z + V − z(Y†z + H̃(n)), (8)

and there is a separate equation governing the evolution of w given by

iẇ† = w†(zY† − H̃(N−n)) + (H̃(n) + Y†z)w† + Y†. (9)

The diagonal terms of the time-evolution operators are governed by

i ˙̃U 2(t) =
(

H̃(N−n) − zY† 0
0 H̃(n) + Y†z

)
Ũ2. (10)
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Returning to the case where the Hamiltonian is Hermitian, it is convenient to render
the two matrices Ũ1 and Ũ2 themselves unitary [31, 32]. For this purpose, a ‘gauge factor’
b is chosen such that the unitary counterparts of Ũ1 and Ũ2 are defined via U1 = Ũ1b

and U2 = b−1Ũ1. Since Ũ
†
1 Ũ1 = diag

(
γ

(−1)
1 , γ2

)
, this would imply that b is the

‘Hermitian square-root’ of diag
(
γ

(−1)
1 , γ2

)
. This ‘Hermitian square-root’ is defined by

the relation (b(−1))†b(−1) = diag
(
γ

(−1)
1 , γ2

)
. Inspection of the power series expansion of

γ
(± 1

2 )

1 = (Î + z · z†)(±
1
2 ) and γ

(± 1
2 )

2 = (Î + z† · z)(±
1
2 ) shows that since each term in the expansion

is Hermitian, matrices γ
± 1

2
1 and γ

± 1
2

2 are Hermitian and have non-negative eigenvalues.
Because of this, it is sufficient to define b as the inverse square root via b(−2) = diag

(
γ

(−1)
1 , γ2

)
.

Furthermore, Heff in equation (5) is Hermitian for the unitary counterpart U1. The upper
diagonal block of this Hermitian Hamiltonian accompanying the decomposition U = U1U2 is
given by

i

2

⎡⎣d
(
γ

− 1
2

1

)
dt

, γ
1
2

1

⎤⎦ +
1

2

(
γ

− 1
2

1 (H̃(N−n) − zV†)γ
1
2

1 + H.c.
)
, (11)

where [,] represents the commutator and H.c. stands for the Hermitian conjugate. The lower
diagonal block is similarly given by

i

2

⎡⎣d
(
γ

− 1
2

2

)
dt

, γ
1
2

2

⎤⎦ +
1

2

(
γ

− 1
2

2 (H̃(n) + z†V)γ
1
2

2 + H.c.
)
. (12)

For N = 3, n = 1, these diagonal blocks define an SU(2) and a U(1) Hamiltonian, and z is
a pair of complex numbers. The SU(2) Hamiltonian is in turn rendered in terms of its fiber
bundle in figure 1 and the U(1) Hamiltonian corresponds to a phase. Together, they describe
a four-dimensional fiber for SU(3) over the base manifold, also four dimensional, of z.

Alternatively, SU(3) problems may be conveniently seen as a part of SU(4) problems,
making contact with two-qubit systems that are extensively studied. In this case, for N = 4,
n = 2, these diagonal blocks define two SU(2) Hamiltonians and z is a 2 × 2 matrix
representable in terms of Pauli spinors. Generally, it is eight dimensional while the fiber
has seven dimensions (two SU(2) and a mutual phase) but for the SU(3) subgroup of SU(4),
both the base and manifold again reduce to four dimensions each. With z being a pair of
complex numbers, the non-trivial part of geometrizing SU(3) is thereby reduced to describing
this four-dimensional manifold. Exploring this for the N = 3, n = 1 decomposition will be the
content of the following section whereas the appendix gives the alternative SU(4) rendering.

3. Geometry of general SU(3) time-evolution operator

A general time-dependent three-level Hamiltonian may be written in terms of eight linearly
independent operators of a three-level system. Such a Hamiltonian can also be written in
terms of a subgroup of 15 operators of a four-level system. Before the time-evolution operator
is presented in the SU(3) basis in terms of a N = 3, n = 1 decomposition, we will note that it
can be rendered in a few alternative ways.

First, a general time-dependent four-level Hamiltonian may be written as H(t) = ∑
i ciOi .

Here ci are time-dependent and Oi are the unit matrix and 15 linearly independent operators of
a four-level system that may be chosen in a variety of matrix representations. One choice used
in particle physics are the so-called Greiner matrices [21–24, 38]. Another choice consists of
using �σ, �τ , �σ ⊗ �τ and the 4 × 4 unit matrix. Such a choice was discussed in [25, 26] and will
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4

32

1

Figure 2. Levels |2〉 and |3〉 couple equally to |1〉 and to |4〉, which are themselves coupled. The
three complex coupling matrix elements and two energy positions define such an SU(3) system.

be used throughout this paper. As it stands, the above Hamiltonian describes a general four-
level atom with four energies and six complex couplings. Note that only the three differences
in energies are important. Restricting the 15 coefficients ci to a smaller number allows this
Hamiltonian to describe various physical Hamiltonians, forming different subalgebras of the
SU(4) algebra [25]. For example, if two of the six complex couplings are zero (levels 1 and 4
and levels 2 and 3 of a four-level atom not coupled), then the Hamiltonian may be recast such
that the operators involved belong to an so(5) subalgebra [25]. On the other hand, if levels 2
and 3 are degenerate and level 4 is uncoupled from the rest, then the problem may be recast in
terms of only eight operators belonging to the SU(3) subalgebra of SU(4). This is illustrated
in figure 2 and is one of the systems of interest in this paper.

Alternatively, after one arrives at the linear equation for the N = 4, n = 2 decomposition,
one can represent the resulting vector in terms of six homogeneous coordinates. This is the so-
called Plücker coordinate representation for the SU(3) Hamiltonian. These coordinates as well
as the alternative derivation are presented in the appendix. The N = 3, n = 1 decomposition
will be the content of the rest of this section.

Consider the Hamiltonian in the basis of the Gell–Mann lambda matrices [39] H(t) =∑
i aiλi . The N = 3, n = 1 decomposition consists of writing the time-evolution operator in

terms of a product of two matrices U = Ũ1Ũ2 where Ũ1 is composed of a (2×1)-dimensional
z, as explained in section 2. The equation that governs the evolution of z, equation (6), can be
written in this case as

żμ = −iVμ − iFμνzν + iV ∗
ν zνzμ; μ, ν = 1, 2. (13)

Here, the symbols used in defining ż are defined as V = (a4 − ia5, a6 − ia7) and

F =
(

a3 +
√

3a8 a1 − ia2

a1 + ia2 −a3 +
√

3a8

)
.
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Figure 3. The base and fiber for the SU(3) group. The first two factors give the base manifold, an
S5 sphere with a phase arbitrariness defined in the text. The fiber, described by the third matrix,
is composed of a Bloch sphere and a phase associated with each of its points, and the second an
extra phase represented by a vertical line in the lower diagonal block.

Using the transformation equations m1,2 = −z1,2(D eiφ)−1, m3 = (D eiφ)−1 and |m1|2 +
|m2|2 + |m3|2 = 1 leads to the evolution equation for �m = (m1r , m2r , m3r , m1i , m2i , m3i )

T :

�̇m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −a2 a5 a3 +
√

3a8 a1 −a4

a2 0 a7 a1 −a3 +
√

3a8 −a6

−a5 −a7 0 −a4 −a6 0
−a3 − √

3a8 −a1 a4 0 −a2 a5

−a1 a3 − √
3a8 a6 a2 0 a7

a4 a6 0 −a5 −a7 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�m, (14)

which describes the rotation of a unit vector in a six-dimensional space of the real and imaginary
parts of �m defined by mμ = mμr + imμi . In the above equations, D = (1 + |z1|2 + |z2|2)1/2 and
iφ̇ = i(V ∗

ν zν +Vνz
∗
ν). The phase φ is real and determined only up to an additive constant. Since

the real and imaginary parts of m3 are not independently defined, the geometrical description
of the base manifold for the N = 3, n = 1 decomposition may be thought of as a point on the
surface of a constrained six-dimensional unit sphere.

The two constraints, namely |m1|2 + |m2|2 + |m3|2 = 1 and the ‘phase arbitrariness’ of
φ, reduce the six-dimensional manifold of the three-dimensional complex vector �m to a four-
dimensional manifold in agreement with there being only four independent parameters in z.
The first condition defines the base as a vector on an S5 sphere while the phase arbitrariness
serves as an additional constraint. The fiber, on the other hand, is an SU(2) block, evolving
as a vector on the S2 Poincare-like sphere with a phase at each point, and a U(1) block that
amounts to an extra phase. This is presented schematically in figure 3, as the product of three
matrices of the evolution operator.

The alternative N = 4, n = 2 decomposition in the appendix yields the equation of
motion for mμ = −zμ/Deiφ in equation (A.11). Following equations (11) and (12), we see
that for this case, the two remaining blocks of the time-evolution operator, namely Ũ (4−2) and
Ũ (2), can be transformed into unitary matrices for SU(2). The fiber evolves as vectors on two
identical S2 Bloch spheres with a mutual phase, whose evolution is coupled to the base that
evolves as a vector on an S5 sphere. This is illustrated in figure 4.

Either decomposition can be used to study various physical processes as will be discussed
in the following section.

7
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Figure 4. The base and fiber for the SU(3) group via the N = 4, n = 2 decomposition. The base
again is given by an S5 sphere as in figure 3. The fiber is composed of two identical SU(2) Bloch
spheres plus phase, and an extra mutual phase between them. The four parameters each of base
and fiber again account for all eight parameters of SU(3).

4. Applications

It is often desirable to control the time evolution of quantum states to manipulate an input
state into a desirable output state. In [40, 41], the authors considered a Hamiltonian of form
H0 −μE(t), where H0 is a free-field Hamiltonian and μE(t) is a control field. To illustrate the
‘Hamiltonian encoding’ scheme to control quantum systems, the authors considered a three-
level system and studied stimulated Raman adiabatic passage (STIRAP), an atomic coherence
effect that employs interference between quantum states to transfer population completely
from a given initial state to a specific final state. This is done through a ‘counterintuitive’
pulse sequence. Consider the Hamiltonian

H(t) =
⎛⎝ 0 G1(t) 0
G1(t) 2	 G2(t)

0 G2(t) 0

⎞⎠ . (15)

Here G1,2(t) = 2.5 exp[−(t − t1,2)
2/τ 2] and 	 = 0.1. The initial population is in the upper

state. For t1 = τ , t2 = 0 and τ = 3, it is seen that the two empty states are coupled first via
G2(t) and then the levels |1〉 and |2〉 are coupled through G1. The dynamics of the populations
reveal complete population transfer. A complete solution as per section 3 was constructed
for this model, and the results are presented in figure 5 in total agreement with the results
of [40].

Quantum control can also be achieved by understanding the nature of tunneling. The
famous Landau–Zener formula [5–7] predicts the transition probability of the ground state of
a two-level system when the energy levels adiabatically undergo a crossing. The study of level
crossings has since been extended to multi-level systems. For example, in [42], the authors
considered a three-level atom to study population trapping by manipulating the phase acquired
as a three-level system evolves under the influence of frequency modulated fields [43]. Such
a frequency modulated field is given by

E(t) = E1e−i[ω1t+ϕ1(t)] + E2 e−i[ω2t+ϕ2(t)] + c.c. (16)

ϕi(t) = Mi sin it. (17)

8
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1 3

10 5 0 5 10
t

0.2

0.4

0.6

0.8

1.0

P1 j

Figure 5. Population P1j = |〈1|j〉|2 plotted as a function of time. The initial population in state
|1〉 is completely transferred to |3〉. Both the unitary integration solution and the direct numerical
solution [40] are plotted and they coincide at all times.

Here, c.c. stands for the complex conjugation. The phase ϕi(t) in the exponent can be written
in terms of Bessel functions as [44]

eMj sin j t =
∞∑

k=−∞
Jk(Mj) eikj t . (18)

For large values of j , the leading contribution for slow-time scales would come from J0(Mj ).
Hence, for large j , the interaction Hamiltonian can be written as

Hint(t) = −d · (E1J0(M1) + E2J0(M2). (19)

Hence, for values of M1,2 that are zeros of the zeroth-order Bessel functions, the interaction
Hamiltonian is zero and population trapping is observed. Under this assumption, consider the
full Hamiltonian under the rotating wave approximation,

H(t) =
⎛⎝E1(t) G1(t) 0

G∗
1(t) 0 G2(t)

0 G∗
2(t) E3(t)

⎞⎠ .

Here, E1(t) = 	1 − M11 cos(1t + θ) and E3(t) = −	2 + M22 cos(2t). Results are
presented in figure 6, and for the parameter values 1,2 = 1, 	1 = −	2 = 10, θ = 0 and
G1,2 = 6, demonstrate the phenomenon of population localization discussed in [42].

As a final illustration of the unitary integration technique applied to three-level systems,
let us consider the example discussed in [45]. Here, a three-level system is subject to strong
fields and the correlation between the scattered light spectrum and the atom dynamics is
discussed. The authors consider the Hamiltonian

H(t) =
⎛⎝ 0 0 G1(t)

0 0 G2(t)

G∗
1(t) G∗

2(t) 0

⎞⎠ . (20)

Here, G1,2(t) = −V1,2 e−iδt . The time evolution of the states calculated as per our procedure
in section 3 is plotted in figure 7 for different values of the parameters. All of these results
agree with those given in [45]. Further features of the base and fiber will be presented at the
end of the following section.
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Figure 6. (a) For M1,2 = 7 and the other parameter values given in the text, there is no population
trapping observed. (b) The energy landscape for M1,2 = 30.6346 showing energy level crossing.
(c) Population trapping is observed with M1,2 = 30.6346 which corresponds to the tenth zero of
the zeroth-order Bessel function. Note that the thick line is P11 and the thin line corresponds to
P12. The results agree completely with [42].

5. Geometric phase for the SU(3) group

Many physical systems give rise to a measurable phase that does not depend directly on the
dynamical equations that govern the evolution of the system, but depends only on the geometry
of the path traversed by vectors characterizing the state of the system. This geometric phase
is denoted by γg and is given by the integral [46],

γg =
∫

dR · 〈n(R(t))|i∇R|n(R(t))〉, (21)

10
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Figure 7. (a) Populations P1j = |〈1|j〉|2 for δ = 5, V1 = 2 and V2 = 1. P11 is given by the solid
line and P12 is given by the thin line. (b) Same as (a), for δ = 12. Note that P13 oscillates close to
zero at all times. (c) P1j for δ = 12, V1 = 1 and V2 = 2.

where the state evolution is governed by a set of internal coordinates that parameterize
the Hamiltonian R(t), and ∇R is the gradient in the space of these internal coordinates.
This phase has been generalized to non-cyclic non-adiabatic evolution of quantum systems
[35, 36, 47–49]. The purpose of this section is to present this phase in terms of coordinates
on the Bloch sphere for two-level systems and extend it to three-level systems.

In two-level systems, the time-evolution operator is described by three parameters as
described in section 1. Two of these parameters describe a point on the Bloch sphere.
Traversing closed loops on this Bloch sphere returns the quantum system to its initial state as
described by the two parameters on the Bloch sphere but not the third parameter of an overall
phase. Hence, general closed loops on the Bloch sphere do not correspond to closed loops in
the space of the full unitary operator. This discrepancy in the phase between the initial and
final states corresponds to the geometric phase given above and amounts to changes along the

11
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Figure 8. The base manifold U1 is characterized by two sets of angles 0 � θi < π , 0 � εi < 2π

which can be represented as two vectors with polar angles (θ1, ε1) and (θ2, ε2).

fiber at each point on the sphere. To formalize this, consider U1, given by equation (3), as
unitarized through the matrix b in section 2, which for N = 2, n = 1 takes the form

U1 = 1√
1 + |z|2

(
1 z

−z∗ 1

)
. (22)

By identifying cos θ
2 = (1 + |z|2)− 1

2 and sin θ
2 e−iε = −z(1 + |z|2)− 1

2 , we get the usual
description of the base manifold in terms of the angles 0 � θ < π and 0 � ε < 2π that are
associated with the Bloch sphere, namely,

U1 =
(

cos θ
2 − sin θ

2 e−iε

sin θ
2 eiε cos θ

2

)
. (23)

In terms of the parameters θ and ε, the Hamiltonian H(t) = −�a · �σ is given by

H(t) =
( − cos θ − sin θ e−iε

− sin θ eiε cos θ

)
. (24)

Equation (5) governing the evolution of the fiber U2 has two terms. The first term is evaluated
as

U
†
1H(t)U1 =

(−1 0
0 1

)
, (25)

which corresponds to the eigenvalues of the Hamiltonian. To evaluate the second term,
consider the case whereby the vector on the Bloch sphere traverses a closed path defined by a
constant θ . The second term is then given by

U
†
1

∂U1

∂(−iε)
=

( − sin2 θ
2 − 1

2 sin θe−iε

− 1
2 sin θeiε sin2 θ

2

)
. (26)

Integrating ε from 0 to 2π yields∫ 2π

0
dεU

†
1

∂U1

∂(−iε)
=

(
π(1 − cos θ) 0

0 −π(1 − cos θ)

)
,

which is the correct formula for the geometric phase of a two-level system [46].

12
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Figure 9. The base manifold corresponding to the results in figure 7 for the three-level system of
[45]. For the first column, V1 = 1, V2 = 2. The second column corresponds to V1 = 2, V2 = 2
and the third to V1 = 2, V2 = 1. The rows correspond to δ = 1, δ = 5 and δ = 50. The thin black
curve describes (θ1, ε1) and the thick red curve the set (θ2, ε2).

To extend this analysis to three-level systems, we consider the N = 3, n = 1
decomposition. The matrix U1 = Ũ1 · b is now given by

U1 =
(

I (2) − 1
D(D+1)

zz† z
D

− z†

D
1
D

)
, (27)

where z is a complex column vector (z1, z2)
T and D =

√
1 + |z|2. To this effect, we transform z

into polar coordinates: z1 = − tan θ1
2 cos θ2

2 eiε1 , z2 = − tan θ1
2 sin θ2

2 eiε2 . These transformation

equations imply that D =
√

1 + |z|2 = sec θ1
2 . The U1 matrix is given by

U1 =
⎛⎝ 1 − 2 sin2 θ1

4 cos2 θ2
2 − sin2 θ1

4 sin θ2 ei(ε1−ε2) − sin θ1
2 cos θ2

2 eiε1

− sin2 θ1
4 sin θ2 e−i(ε1−ε2) 1 − 2 sin2 θ1

4 sin2 θ2
2 − sin θ1

2 sin θ2
2 eiε2

sin θ1
2 cos θ2

2 e−iε1 sin θ1
2 sin θ2

2 e−iε2 cos θ1
2

⎞⎠ . (28)

In the above equation, the range on the polar angles is chosen to be the usual 0 � θi < π

and 0 � εi < 2π so that the absolute value of each element of the time-evolution operator
is positive [50]. Hence U1 can be represented as two vectors on a sphere, at angles (θ1, ε1)

and (θ2, ε2) respectively: figure 8. The transformation equations imply that the vector �m
13
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defined in section 3 is given by m1 = sin θ1
2 cos θ2

2 ei(ε1−φ), m2 = sin θ1
2 sin θ2

2 ei(ε2−φ) and
m3 = cos θ2

2 e−iφ . Note that U1 does not depend on φ.
Since the columns of a unitary operator correspond to normalized eigen-

vectors, we can consider the last column of the matrix above, |ψ〉 =(− sin θ1
2 cos θ2

2 eiε1 ,− sin θ1
2 sin θ2

2 eiε2 , cos θ1
2

)T
, and evaluate the so-called connection 1-form

given by [51]

A = −i〈ψ |d|ψ〉. (29)

The Abelian geometric phase, given by γg = ∫
A is evaluated to be

γg = −1

2

∫
sin2 θ1

2
((dε1 + dε2) + cos θ2(dε1 − dε2)). (30)

If the various angles are relabeled ε1 → −γ − α, ε2 → −γ + α, θ1 → 2θ and θ2 → 2β,
the formula above agrees with [52] and [50]. The time-evolution operator above can now
be used as in the case of SU(2) to evaluate the dynamic contribution

∫
U

†
1H(t)U1 and the

geometric contribution to the time-evolution operator which is given by −i
∫

U
†
1 dU1, where

dU1 = dU1
dθi

dθi + dU1
dεi

dεi , i = 1, 2.
This description of the base manifold in terms of (θi, εi) can now be used to describe the

dynamics of various physical processes. Figure 9 represents the base manifold corresponding
to the results in figure 7. (θ1, ε1) depend on all the parameters that define the system while
(θ2, ε2) depend only on the ratio V1/V2. Also note that the maximum value of ε2, corresponding
to the maximum latitude traversed by the black curve, is inversely proportional to δ. Such
observations can be used to control the dynamics of this system.

6. Conclusions

The ability to decouple the time dependence of operator equations from the non-commuting
nature of the operators is the central feature of unitary integration and also characterizes the
Bloch sphere representation for the evolution of a single spin. By doing so, the quantum
mechanical evolution is rendered a ‘classical’ picture of a rotating unit vector. For a two-
level atom, the Bloch sphere representation along with a phase completely determines the
time-evolution operator. In this paper, we have extended this program to deal with the time-
evolution operator belonging to the SU(3) group. This complements the work in [31] for
SU(4) Hamiltonians of two-qubit systems. We have also extended the analysis of geometric
phase to three-level systems by providing an explicit coordinate representation for the SU(3)
time-evolution operator.

Appendix. Alternative derivations for a general SU(3) Hamiltonian.

Consider a three-level Hamiltonian written in terms of the Gell–Mann matrices [39] as
H(t) = ∑8

i=1 aiλi . To exploit the fact that this Hamiltonian is a subgroup of four-level
problems, it is represented in terms of the O matrices [25, 26] as

2
a8√

3
O2 +

(
a3 − a8√

3

)
O3 +

(
2a3 + 2

a8√
3

)
O4 + a4O5 + a5O6 + 2a4O7 + 2a5O8

+ a1O9 + a2O10 + 2a1O11 + 2a2O12

+ 2a6O13 + 2a6O14 − 2a7O15 + 2a7O16. (A.1)

This embeds the Hamiltonian H(t) = ∑
i aiλi as a 4×4 matrix with zeros along the last row

and column. In such a representation, the various entries of the Hamiltonian equation (2) are

14
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given by

H(4−2) = 1√
3
a8I(2) + a1σ1 + a2σ2 + a3σ3, (A.2)

H(2) = − 1√
3
a8I(2) − 1√

3
a8σ1, (A.3)

V = 1
2 (a4 − ia5)I

(2) + 1
2 (a6 − ia7)σ1 − i 1

2 (a6 − ia7)σ2 + 1
2 (a4 − ia5)σ3. (A.4)

Writing z in the standard Clifford basis as z = 1
2z4I(2)− i

2

∑
i ziσi , it follows from equation (6)

that z1 = iz2 and z3 = iz4 and the equation reduces precisely to equation (13). The geometry
described in section 3 can thus be derived from either of these decompositions of the time-
evolution operator.

The SU(3) subgroup in equation (A.1) is one among many SU(3) subgroups embedded
in SU(4). Another choice corresponds to the Dzyaloshinskii–Moriya interaction Hamiltonian
[12, 13] and is also of interest because the 4×4 matrices now do not have a trivial row and
column of zeros. In the two-spin basis, this Hamiltonian is given by

H(t) =
∑

i

ciOi = a1(O2 + O3) + 2a2(O15 + O16) + 2a3(O14 − O13) + 2a4(O7 + O11)

+ a5(O6 + O10) + a6(O5 + O9) + 2a7(O8 + O12)

+
2a8√

3
(2O4 − O13 − O14). (A.5)

The correspondence between the coefficients in terms of O and in terms of the λ matrices is:
c1 = 0, c2 = a1, c3 = a1, c4 = 4a8/

√
3, c5 = a6, c6 = a5, c7 = 2a4, c8 = 2a7, c9 = a6,

c10 = a5, c11 = 2a4, c12 = 2a7, c13 = −2a3 − 2a8/
√

3, c14 = 2a3 − 2a8/
√

3, c15 = 2a2

and c16 = 2a2. Relabeling of the states 1 → 2, 2 → 3, 3 → 4 and 4 → 1 expresses the
Hamiltonian as

H(4−2) = 1√
3
a8I(2) − a3σ1 − a2σ2 − a1σ3, (A.6)

H(2) = − 1√
3
a8I(2) − 1√

3
a8σ1, (A.7)

V = 1
2 (a6 − ia7)I

(2) + 1
2 (a6 − ia7)σ1 − 1

2 (a5 + ia4)σ2 − 1
2 (a4 − ia5)σ3. (A.8)

If z is written in terms of the standard Clifford basis (Î,−i�σ) as z = 1
2z4I(2) − i

2

∑3
i=1 ziσi ,

it follows from equation (6) that z1 = iz4 and z2 = iz3. This is consistent with the
parameter count that since the inhomogeneity V has only two free complex parameters (namely
V1 = a6 − ia7 and V2 = a4 − ia5), the complex z matrix should be composed only of two
independent complex parameters, z1 and z2. With the above analysis, equation (6) becomes
for the pair of complex numbers

1
2 żμ = 1

2Xμ − iFμνzν + 2Gνzνzμ; μ, ν = 1, 2. (A.9)

Here X = (V1/2,−iV2/2), G = (
2V ∗

1 , 2iV ∗
2

)
and

−iF =
(

ia3 − √
3ia8 a1 + ia2

−a1 + ia2 −ia3 − √
3ia8

)
.

Paralleling the technique employed to solve an SO(5) Hamiltonian in [31, 32], we

transform z into a complex vector �m: mμ = −2zμeiφ

D
and m3 = eiφ

D
such that |m1|2 + |m2|2 +

|m3|2 = 1, with D = (1 + 4(|z1|2 + |z2|2))1/2. This leads to the new set of evolution equations

�̇m =
⎛⎝ia3 − √

3ia8 a1 + ia2 −a6 + ia7

−a1 + ia2 −ia3 − √
3ia8 a5 + ia4

a6 + ia7 −a5 + ia4 0

⎞⎠ �m. (A.10)
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This can be written as an equation describing the rotation of the real and imaginary components
of the vector �m = (m1r , m2r , m3r , m1i , m2i , m3i )

T ,

�̇m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 −a6 −a3 +
√

3a8 −a2 −a7

−a1 0 a5 −a2 a3 +
√

3a8 −a4

a6 −a5 0 −a7 −a4 0
a3 − √

3a8 a2 a7 0 a1 −a6

a2 −a3 − √
3a8 a4 −a1 0 a5

a7 a4 0 a6 −a5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�m. (A.11)

Here, the coefficients ci are written in terms of the coefficients ai, whose correspondence was
given earlier in this section. Also note that mμ = mμr + imμi , D = (1 + |z1|2 + |z2|2) 1

2 and
φ̇ = (V ∗

ν zν + Vνz
∗
ν). Simplifying this leads to the equation iφ̇ = −2

(
Xμz∗

μ − X∗
μzμ

)
for the

evolution of φ which is clearly real but determined only to within a constant. A little algebra
yields for the effective Hamiltonian given by equation (11),

H(4−2) − 1

(D + 1)
(zV† + Vz†) − 1

2(D + 1)2
(zV†zz† + zz†Vz†),

and for the effective Hamiltonian given by equation (12), the expression H(2) + (z†V + V†z)/2.

Another representation of the SU(3) subgroup of SU(4) Hamiltonians is given by the
so-called Plücker coordinate representation of the SU(4) group discussed in [31, 32]. For
an arbitrary SU(4) matrix, the Plücker coordinates are defined as a set of six parameters
(P12, P13, P14, P23, P24, P34) such that P12P34 −P13P24 +P14P23 = 0 and

∑ |Pij |2 = 1. They
can be written in terms of the unit vector �m and are given by⎛⎜⎜⎜⎜⎜⎜⎜⎝

P12

P13

P14

P23

P24

P34

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

im6 − m5

im1 + m2

−im3 + m4

−im3 − m4

−im1 + m2

im6 + m5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A.12)

The linear equation of motion for �m translates into an evolution equation for P =
(P12,−P13, P14, P23, P24, P34) of the form iṖ = HP P. Here, HP is given by

HP =
(

HP 1 VP

V
†
P HP 2

)
, (A.13)

where

HP 1 =

⎛⎜⎝ 2a8/
√

3 a64− + ia75− a64− + ia75−
a64− − ia75− −a1 a8/

√
3

a64− − ia75− a8/
√

3 −a1

⎞⎟⎠ ,

HP 2 =

⎛⎜⎝ a1 −a8/
√

3 −a64− − ia75−
−a8/

√
3 a1 −a64− − ia75−

−a64− + ia75− −a64− + ia75− −2a8/
√

3

⎞⎟⎠ ,

VP =
⎛⎝−a64+ − ia75+ a64+ + ia75+ 0

a32− 0 −a64+ − ia75+

0 −a32− a64+ − ia75+

⎞⎠ .

In the above equations, aij± denotes ai ± aj .
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